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COMMENT 

Soliton excitation in coupled complex scalar field theory 
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‘Republic of China 
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Abstract. Sarker el 01 have obtained two soliton solutions for a complex onedimensional 
field. We present a simple and effective method for obtaining the exact soliton solutions of 
the same equation. The method suggested here can he applied to other coupled non-linear 
systems as well. 

Most of the relatively few known analytic solitary wave solutions are to non-linear wave 
equations for a real scalar field in one space and one time dimension. Sarker eta! (1976) 
considered that a certain equation for a complex scalar field in one dimension arises 
from the particular context of weakly pinned charge-density-wave condensates and 
presented soliton solutions in the particular case. In this paper, we find the analytic 
soliton solutions of the same equation by a simple and effective method. One considers 
the Lagrangian density as follows (Sarker eta1 1976): 

3 = t lWt lZ  - k 2 I W X / *  + balWI2 - tblv14 - dlWl2[1 - cos(2q)I (1) 
where W(x, t) = u(x, t) exp[iq(x, t)] is a complex field. The last three terms in equation 
( 1 )  can be thought of as the local potential V ( q )  = -had + ibu4 + du2[1 - cos(2q)l 
whose continuous rotational symmetry has been broken and replaced with a (twofold) 
discrete symmetry. The amount of coupling in both U and q should clearly depend on 
the relative magnitudes of the central hump and phase ‘dimple’ potentials, or the ratio 
d/a  (Bishop and Schneider 1978). 

We rewrite equation (1) for the real and iinagingry parts of the wavefunction = 
U + ip and the Lagrangian density becomes 

3 =$(U: + p:)  - icz(o~ + p:)  + $a(02 + p2)  - $b(d  + p2)2 - Zdp2. (2) 

( 3 4  

(36)  

The coupled non-linear equations of motion are given by 

oII - c20u - ao + bo(oz  + p2) = 0 

p n  - czp, - (a  - 4d)p + bp(oz + p z )  = 0. 

One seeks soliton solutions to equation ( 3 )  of the form U = U@), p = p(s), where 
s = (r/c)(x - ut) with r = ( I  - uz/c2)-1’z. The equations of motion are 

U,$ = -ao + bo($ + p2) 

prs = (4d - a ) p  + bp(oz + pz). 

( 4 4  

(46) 
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Note that, because of the symmetry of equation ( 4 ) ,  one cames out the non-linear 
transformation 

u,~ = A a p  (50) 

ps  = B + Cp2 + DO'. (56) 

a ,  = A B o  + ADo3  + (A2 + AC)ap2 (60) 

pss = 2CBp + 2C2p3 + 2(CD + AD)pa2.  (6b) 

From equation (59, we have 

Equations (4)  and (6) possess the same mathematical structure, which implies that 
equation (6) is completely equal to equation (4)  if equation ( 5 )  is a correct non-linear 
transformation. On comparison of equation (4)  with equation (6), the real constants 
A ,  B, C and D satisfy the following relations: 

A B =  -a 

2CB = (4d - a)  

A D  = A' + AC= b 
(7) 2C2 = 2(CD + A D )  = b. 

Equations (7) give 

A = aV'%/(a - 4d)  B = (4d - a ) / a  C = Vi$ 

D = b(a - 4 d ) / a a  a = 2d (80) 
and 
A = aV%/(4d - a) B = (a - 4 d ) J z  C = -- . .  

D = b(4d - a ) / a a  a = 2d. (86) 
It needs to be pointed out that the symmetry of equation (4)  means that the non- 

linear transformations (5) can only be used if the coefficients of the original Lagrangian 
satisfy the condition a = 2d. Substituting (50) into (56) and using (8), we immediately 
obtain 

- ~ / 2 0  = -QU + bo3. (9)  
Eliminating the non-linear term -4120 from equation (9) with the aid of the 

transformation U = ym, equation (9) becomes 

y ,  = -ay/m + b y k i ' / m  (10) 
with m = 2. 

It is easy to obtain the solution of equation (10) as follows: 
~ ~. 

a = ?=- c o s e c h [ G ( ( r / c )  (x  - U;) + CO] 

p = -  + q c o t a n h [ G ( r / c ) ( x  -.ut) + CO] 

(i la) 

(1lb)  
where r = (1 - u2/c2)-1/2 and CO is an arbitrary real constant. 

another non-linear transformation 
As equations (4 )  possess a certain symmetrical structure, thus we may perform 

as = A + Bo= f cp2 ( 1 2 4  

p s  = Dap.  (12b) 
- 
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Similarlyweobtainanothersolitonsolutionofequation (4 )  by using the samemethod 
as follows: 

U =  + q c o t a n h [ f i ( r / c ) ( x  - ut) + CO] 

p = 2 l/%$ cosech[ f i ( r / c )  (x - ut)  + CO] 

( 1 3 4  

(136) 

where rand CO are the same as above. 

Hamiltonian density is 
For us it is convenient to go over to the Hamiltonian formalism. The corresponding 

%e = $(U: + p:) + &?(U: + p:) - $u(u’ + p 2 )  + f b ( d  + p 2 ) 2  + 2dp2. (14) 

The corresponding soliton energy is given by (here we adopt the renormalization 
technique) 

One can derive expressions for the energy of both solitons from equations (15),  (11) 
and (13); it is straightforward to show that 

E l  = -26uZ[rZ(vZ + c 2 )  + c 2 ] / 3 G b c r  

Ez = -26az[r2(u2 + c z )  + c2]/3&bcr. 

(164 

(16b) 

From equation (16), we also have the effective masses of both solitons: 

mr = - 5 2 a 2 / 3 G b c  

m; = -52az/3&bc 

(a <O, b > 0 ,  c < 0)  ( 1 7 4  

(17b) (a  > 0,  b > 0, c < 0). 

In conclusion, we have found two kinds of solitary-wave solutions to certain coupled 
equations of motion for a complex scalar field in one dimension. The stable solutions of 
equations (3)  and the exact soliton solutions of the coupled relativistic scalar field 
theory (Rajaraman 1979) may be included in the same category. Generally a relevant 
transformation is powerful for solving the related non-linear problems. It is well known 
that the Cope-Hopf transformation (5a), etc. are useful transformations which play an 
important role in the linearization of non-linear problems such as the Burgers equation. 
The method suggested here can be applied to non-linear diffusion systems such as the 
Fisher equation (Wang 1988) and to coupled non-linear differential equations systems; 
for example, we may obtain soliton solutions for the general couple8 non-linear 
equations with damped tenns by the above method: 

r1 au/at + a2u/at2 - a2u/axz = fi(u, U) 
r2 aular + a2u/at2 - a2u/ax2 = f 2 ( u ,  U) 

where r ,  and r2 are damped coefficients and fi(u, U) and f;(u,  U) are analytic function 
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for U and U. Let u(x ,  t) = u(x - ct) = u(s), u(x ,  t) = u(x - cf )  = U@); then equation (18) 
becomes 

-cr,  dulds + c2 d'u/ds2 - d2u/ds2 = fi(u,  U )  

-cr2 du/& + c2 d2u/ds2 - d2u/dsZ = f2(u, U). (19) 

If we take 

du/ds = PI@, U) dulds = P2(u,  U) (20) 
equation (19) can be written as 

-C?'lPi + (C2 - l )[(aPi/aU)P,  + (aP,/aU)Pz] =fl(U, U) 
(21) -crzPz + (cZ - i)[(aP,/au)P, + ( ~ P , / ~ u ) P , ]  = f2(u, U). 

Looking forsuitable non-linear functionsPl(u, U) and Pz(u, U) which satisfy equation 
(21) and then integrating equation (ZO), we may derive solutions of equation (18). 

Furthermore, we may perform a linear stability analysis of the soliton solutions, as 
the stability of the soliton solution needs to be considered in the practical physical 
process. 
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